
ScottAntall.com Advanced ColdFusion Page 29

Looping with <cfloop>
In ASP and other server-side web technologies developers must loop through resulting
records of a database query to display the results. Since ColdFusion provides the
automatic looping of <cfoutput>, <cfloop> is less important, but is still it is a very
useful feature. The <cfloop> tag can be used to loop many different ways. This chart
defines the most common looping options:

ColdFusion
Loop Type

Comparable
to

Code Example Explanation

Index Loop For Loop <cfloop
 index="x"
 from="1"
 to="10">
code to execute
</cfloop>

An index loop will repeat once for
each value of x. X will increment for
each value between the value in the
from and to attributes. (In our
example, it will repeat 10 times.)

Condition
Loop

While Loop <cfloop
 condition="x
LTE 10">
code to execute
</cfloop>

A Condition loop will repeat as long
as the listed condition is true. In
our example, it will repeat as long as
x is still less than 10.
You must include some way to
change the value x within the
<cfloop> block or we could get stuck
in an infinite loop!

Query Loop For Each
loop (looping
though
resulting
records)

<cfloop
 query="name">
code to execute
</cfloop>

Where “name” is
the name of a
valid <cfquery>

The Query loop is very similar to
<cfoutput> tags – it loops once for
each resulting record of a query. It is
useful because it can be used when
nested <cfoutput> tags are desired or
to use tags that are not allowed in a
<cfoutput> block. (For example,
<cfinclude> is not allowed within
<cfoutput> tags.)

List Loop For Each
loop (looping
though a
list)

<cfloop
 index="x"
 list="110,
120,130,140">
code to execute
</cfloop>

The List loop loops through a list
that is (1) defined in the list attribute
or (2) defined in a variable (see demo
below).

Collection
Loop

For Each
loop (looping
though a
Collection)

<cfloop
collection="URL
" item="x">
code to execute
</cfloop>

The Collection loop will repeat once
for each member of a collection such
as URL, FORM, or CGI variables. It
can also be used with COM objects.

 Page 30 Advanced ColdFusion ScottAntall.com

The <cfloop> tag can provide an easy way to loop through each value of a list or an
array. In the following demo, we will loop through a list and an array that we saw in
the previous section. This demo is saved as ComplexObjects/demos/demo-arrays-
loop.cfm.

<html>
<head>
 <title>Demo: Lists and Arrays in cfloop</title>
</head>

<body>
<cfoutput>

<h2>Lists:</h2>
<cfset listColors = "red,orange,yellow,green,blue,indigo,violet">

<p>The following unordered list shows each value in the list named
listColors</p>

<cfloop list="#listColors#" index="current_one">
 #current_one#
</cfloop>

<h2>Arrays:</h2>
<cfset arrayColors = ArrayNew(1)>
<cfset arrayColors[1] = "red">
<cfset arrayColors[2] = "orange">
<cfset arrayColors[3] = "yellow">
<cfset arrayColors[4] = "green">
<cfset arrayColors[5] = "blue">
<cfset arrayColors[6] = "indigo">

ScottAntall.com Advanced ColdFusion Page 31

<cfset arrayColors[7] = "violet">

<p>The value of the first value in the array named arrayColors[1] is:
#arrayColors[1]#</p>
<p>To print the value at each index position, we can use a loop</p>

<cfset max=ArrayLen(arrayColors)>
 The number of items in this array is #max#
<cfloop index="x" from="1" to="#max#">
 The value if the item in position #x# is #arrayColors[x]#
</cfloop>

</cfoutput>

</body>
</html>

The <cfloop> tag can be used to manually produce the same sort of tables that are
automatically produced with the <cfdump> tag. For many debugging purposes
<cfdump> will be sufficient, however, if you need to control the spacing or the color of
the table, <cfloop> gives you ultimate control of the output since you will build it!

The following code shows how to loop through collections. Note the syntax when
displaying a FORM, URL or CGI variable (i.e. FORM[current_one]) . In the previous
section we took a quick look at structures. The FORM, URL and CGI Collections are
really just structures. You will find the code saved in
ComplexObjects/demos/demo-cfloop-external.cfm:

<html>
<head>
 <title>Demo: Quick List of External Variables</title>
</head>

<body>

<h2>Quick List of External Variables</h2>

<cfoutput>

 <p>Here are the FORM variables (submitted by POST method):</p>
 <table border="1" cellspacing="0" cellpadding="1">
 <cfloop collection="#FORM#" item="current_one">
 <tr>
 <td bgcolor="##aaaaee">#current_one#</td>
 <td>#FORM[current_one]#</td>
 </tr>
 </cfloop>
 </table>

 <hr>

 <p>And the URL variables (links or forms submitted by GET method):</p>

 Page 32 Advanced ColdFusion ScottAntall.com

 <table border="1" cellspacing="0" cellpadding="1">
 <cfloop collection="#URL#" item="current_one">
 <tr>
 <td bgcolor="##aaaaee">#current_one#</td>
 <td>#URL[current_one]#</td>
 </tr>
 </cfloop>
 </table>

 <hr>

 <p>And the CGI variables:</p>
 <table border="1" cellspacing="0" cellpadding="1">
 <cfloop collection="#CGI#" item="current_one">
 <tr>
 <td bgcolor="##aaaaee">#current_one#</td>
 <td>#CGI[current_one]#</td>
 </tr>
 </cfloop>
 </table>

</cfoutput>

</body>
</html>

To test this page, start with ComplexObjects/demos/demo-cfloop-form.cfm, and fill
out the form. .

Syntax of <cfloop>
The <cfloop> tag can be used for various types of loops, but here we are looping
through a collection (as evidenced by the collection attribute). The item attribute
gives us a reusable variable for the name in each name/value pair. Here, we
arbitrarily chose the variable name current_one. This variable name will be used
later to refer to the current record.

The other types of <cfloop> loops include index loops (like for loops in other
programming languages), conditional loops (like while loops in other languages), list
loops (like foreach loops in other languages), and query loops (similar to <cfoutput>
with a query attribute). For documentation about these other types of loops, please
consult ColdFusion Studio's built-in help (right-click any <cfloop> tag and choose Edit
Tag…).

Weeding Out the FIELDNAMES Variable
With both <cfdump> and <cfloop>, you may have noticed that a form submitted via
POST method will have one extra field beyond the expected ones: a separate field

ScottAntall.com Advanced ColdFusion Page 33

named FIELDNAMES is provided as another means of creating loops. If you want to
weed out this extra field, simply add a <cfif> conditional inside your loop:

<cfloop collection="#FORM#" item="current_one">
 <cfif current_one is not "fieldnames">
 <tr>
 <td bgcolor="##aaaaee">#current_one#</td>
 <td>#FORM[current_one]#</td>
 </tr>
 </cfif>
</cfloop>

Using <cfloop> for automatic query output
If you want to duplicate the same effect we had with <cfdump>and a query name, the
looping syntax is a little bit different from the collection loops above.

To see this in action, please open ComplexObjects/demos/demo-cfloop-
recordset.cfm in your browser:

As you may have noticed, it looks almost identical to a <cfdump>. Only difference is,
since we built it by hand, we have more control over display features (such as color,
spacing, fonts, etc.).

Here's the code for that file:

<cfquery name="getdata" datasource=“movieList”>
 SELECT user_rating, count(user_rating) as thecount
 FROM movies
 GROUP BY user_rating
</cfquery>

<html>

 Page 34 Advanced ColdFusion ScottAntall.com

<head>
 <title>Looping through a Recordset</title>
</head>

<body>
The ColumnList is:

<cfoutput>#getdata.ColumnList#</cfoutput>

Here's an recordset table from cfloop:
<table border="1" cellspacing="0" cellpadding="1">

<cfoutput>
 <tr bgcolor="##aaeeaa">
 <cfloop index="current_item" list="#getdata.ColumnList#">
 <td>#current_item#</td>
 </cfloop>
 </tr>
 </cfoutput>

<cfoutput query="getdata">
 <tr bgcolor="##ffffff">
 <cfloop index="current_item" list="#getdata.ColumnList#">
 <td>#Evaluate(current_item)#</td>
 </cfloop>
 </tr>
 </cfoutput>
</table>

</body>
</html>

The first thing to notice here is that our initial <cfloop> tag is a list loop, not a
collection loop. In something like a form (using the FORM or URL collection), each
name had exactly one value; here we have to look at one table row at a time, and each
individual row has its own list of fields & values.

In this table, we want to display two sections (1) a single row with column headings
and (2) the resulting data that will repeat once for each record. For the column
headings, we can loop through the list named ColumnList that we saw in the last
section. Remember, it contains a comma-separated list of database column names
(similar to what the FORM.FieldNames variable does for forms). If we were to print it
out on screen for this example, it would contain THECOUNT,USER_RATING. Thus,
when we plug that into a CFLOOP tag, and pull out the index item at any step along
the way, we get the word THECOUNT or the word USER_RATING. That's exactly what
happens in our heading row:

<cfloop index="current_item" list="#getdata.ColumnList#">
<td>#current_item#</td>
</cfloop>

Note that the #current_item# variable here represents the word USER_RATING, not
the value of the USER_RATING field. If we want to get the USER_RATING interpreted,
and it's being handed to us just as a piece of text, we can use the Evaluate() function,
as seen in the repeating value rows:

ScottAntall.com Advanced ColdFusion Page 35

<cfloop index="current_item" list="#getdata.ColumnList#">
 <td>#Evaluate(current_item)#</td>
</cfloop>

This tells ColdFusion to do two things:

1. Figure out the value of the current_item variable � we get the word USER_RATING.

2. Evaluate USER_RATING as a variable � we get a value, such as 8.

It's also important to note the different structure of the two <cfoutput> tags in that
example. The first one, for the header rows, does not have a query name. It only
needs to run once (one row of headings), and it doesn't have any ambiguous variable
names inside. The second one, for the value rows, does have a query name. It needs
that query name for two reasons:

� These rows have to repeat for all the records.

� The expression #Evaluate(current_item)#, which is equivalent to an expression such as
#USER_RATING#, only makes sense as a column name within the getdata query.

Display Web-safe Colors using CFLOOP
While <cfloop> can be used for many different purposes, this web-safe color table is
created with the use of three nested loops. We have created a list called colors that
holds the values 00,33,66,99,CC and FF. We will loop through these values using
three different loops. For each table cell, we will concatenate together the values of
each of the loop’s index values.

This demo is saved as ComplexObjects/demos/demo-cfloop-colortable.cfm and
comes from Ben Forta’s ColdFusion Web Application Construction Kit.

 Page 36 Advanced ColdFusion ScottAntall.com

<cfset colors="00,33,66,99,CC,FF">

<h2 align="center">This is a list of the Web-safe colors</h2>

<cfoutput>
<table border="1" cellspacing="5" cellpadding="5">

<cfloop list="#colors#" index="red">
 <cfloop list="#colors#" index="green">
 <tr>
 <cfloop list="#colors#" index="blue">
 <cfset rgb=#red#&#green#&#blue#>
 <td bgcolor="#rgb#">#rgb#</td>
 </cfloop>
 </tr>
 </cfloop>
</cfloop>
</table>
</cfoutput>

ScottAntall.com Advanced ColdFusion Page 37

Exercise 4: Display results with <cfloop>
20 to 25 minutes

In this exercise you will query the database and then dynamically loop through the
results. This will be done without using any of the field names! You will not specify
which field is placed in which column. You will simply ask ColdFusion to display all of
the fields in the order it decides to use. This could be called a much more complicated
version of the <cfdump>.

When completed, it might look something like this:

1. Open “ComplexObjects/exercises/loops-temp.cfm”. The code appears below:

<cfquery name="getmovies" datasource=“movieList” >
SELECT * FROM movies
ORDER BY name
</cfquery>

<html>
<head>
 <title>Search Results</title>
</head>

<body>

<h2 align="center">Search Results</h2>

<p>List of movies:</p>
<table border="1" cellspacing="0" cellpadding="1">

<!---
 Add a loop here that will display the field names as
 column headings.
 --->

 Page 38 Advanced ColdFusion ScottAntall.com

 <!---
 Add a second loop here that will display the actual values
 of the fields for each record. You will need the evaluate()
 function
 --->
</table>

</body>
</html>

2. Add two loops in place of the two comments

a. One will create the column headings

b. The second will display the actual value of the fields. (Remember that
you will need to use the Evaluate() function!)

3. Test your page!

ScottAntall.com Advanced ColdFusion Page 39

Possible Solution to Exercise 4
Saved as ComplexObjects/solutions/loops-done.cfm:

<cfquery name="getmovies" datasource=“movieList” >
SELECT * FROM movies
ORDER BY name
</cfquery>

<html>
<head>
 <title>Search Results</title>
</head>

<body>

<h2 align="center">Search Results</h2>

<p>List of movies:</p>
<table border="1" cellspacing="0" cellpadding="1">
 <cfoutput>
 <tr bgcolor="##aaeeaa">
 <cfloop index="current_item" list="#getmovies.ColumnList#">
 <td>#current_item#</td>
 </cfloop>
 </tr>
 </cfoutput>

 <cfoutput query="getmovies">
 <tr bgcolor="##ffffff">
 <cfloop index="current_item" list="#getmovies.ColumnList#">
 <td>#Evaluate(current_item)#</td>
 </cfloop>
 </tr>
 </cfoutput>
</table>

</body>
</html>

